Size-controlled synthesis and characterization of thiol-stabilized gold nanoparticles.
نویسندگان
چکیده
Size-controlled synthesis of nanoparticles of less than a few nanometers in size is a challenge due to the spatial resolution limit of most scattering and imaging techniques used for their structural characterization. We present the self-consistent analysis of the extended x-ray absorption fine-structure (EXAFS) spectroscopy data of ligand-stabilized metal nanoclusters. Our method employs the coordination number truncation and the surface-tension models in order to measure the average diameter and analyze the structure of the nanoparticles. EXAFS analysis was performed on the two series of dodecanethiol-stabilized gold nanoparticles prepared by one-phase and two-phase syntheses where the only control parameter was the gold/thiol ratio xi, varied between 6:1 and 1:6. The two-phase synthesis resulted in the smaller particles whose size decreased monotonically and stabilized at 16 A when xi was lowered below 1:1. This behavior is consistent with the theoretically predicted thermodynamic limit obtained previously in the framework of the spherical drop model of Au nanoparticles.
منابع مشابه
Synthesis and Characterization of Gold Nanoparticles using Plant Extract of Terminalia arjuna with Antibacterial Activity
The use of plant extracts for nanoparticles synthesis are green, economical and cost effective approach. The present study reports the bio-synthesis of gold nanoparticles (Au NPs) using leaf extract of Terminalia arjuna. After exposing the gold ions to aqueous solution of leaf extract, rapid reduction of gold ions into gold nanoparticles is observed within few minutes. The characterizat...
متن کاملFolate-Conjugated Gold Nanoparticles (Synthesis, Characterization and Design for Cancer Cells Nanotechnology-based Targeting)
A new folate-conjugated gold nanoparticle (AuNP) has been designed to selectively target the folate receptor that is overexpressed on the surface of tumoral cells. For this purpose, we made 4-aminothiophenol, as a bifunctional linker to react with HAuCl4 in the presence of sodium borohydride and it was binded to the AuNP surface through its thiol group. Then, we conjugated amino-terminated nano...
متن کاملSynthesis and characterization of Silver-Silica heterogeneous nanocomposite particles by Lithium Aluminum Hydroxide reducing method
We have used Lithium Aluminum Hydroxide reducing method of silver nitrate to prepare heterogeneous silver-silica nanocomposite particles with thiol and amino groups serving to bind the Ag nanoparticles to the surfaces of the SiO2 nanoparticles. We examined products of these reductions using FTIR, SEM, XRD and UV-vis. spectroscopy. The SiO2 nanoparticles had diameters rangi...
متن کاملSynthesis, Surface Assembly, Characterization and Electrochemistry of Gold Nanoparticles
Aalto University, P.O. Box 11000, FI-00076 Aalto www.aalto.fi Author Outi Toikkanen Name of the doctoral dissertation Synthesis, Surface Assembly, Characterization and Electrochemistry of Gold Nanoparticles Publisher School of Chemical Technology Unit Department of Chemistry Series Aalto University publication series DOCTORAL DISSERTATIONS 19/2011 Field of research Physical Chemistry Manuscript...
متن کاملSynthesis of gold nanoparticles: a new approach in using a nanoporous membrane in conjunction with ultrasonication
Gold nanoparticles were synthesized by chemical reduction of HAuCl4 inside the pores of a polycarbonate-based membrane followed by dissolving the membrane in dichloromethane and further sonication. Sonication time as the main affecting factor on the nanoparticle size was investigated. The characterization by transmission electron microscopy showed the formation of gold nanoparticles with diamet...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 123 18 شماره
صفحات -
تاریخ انتشار 2005